PDEs的分类

Orders

最高阶偏微分的阶数 = $PDE$的阶数

示例:$\frac{\partial^2 u}{\partial x^2} + 5\left(\frac{\partial u}{\partial y}\right)^3 = 4\frac{\partial^2 u}{\partial y \partial x}$

方程中最高阶导数为 2 阶$\frac{\partial^2 u}{\partial x^2}$和$\frac{\partial^2 u}{\partial y \partial x}$,因此这是2nd order PDE.

Linearity & Homogeneity

  • Linearity,幂次→乘积:偏导数和因变量的Exponent决定方程的Linearity,二者的幂次需要均为「1 次」;而自变量的exponent则不影响;此外,Linear要求方程也无因变量和偏导数的乘积,即需因变量及其偏导出现在不同项;除此之外,若含非线性函数如$\sin u$,仍然属于non-linear PDE.
  • Homogeneity,自由项:homogeneous的判定标准是「是否存在不包含因变量及其偏导数的 “自由项”」,换言之,方程的所有项都包含因变量($u$)或其某阶偏导数如$\frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2}$;若包含”自由项“如$x,5,f(x,t)$

Solving PDEs by Seperation of Variables

本质是将多变量PDE分解为多个单变量ODEs.

1D Heat Equation

Heat Equation又称Diffusion Equation,描述温度或浓度随时间和空间的变化.

温度变化率与温度的Laplacian成正比.

Heat Equation的形式与物理意义

3D Heat Equation

$$\frac{\partial u}{\partial t} = k \nabla^2 u$$

其中:(u(x,y,z,t))为temperature或concentration,(k>0)为thermal conductivity或diffusivity,(\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})为Laplacian operator.

Review
Laplacian Operator是标量场的二阶空间导数之和,反映场量在所有空间维度上的“总二阶变化率”,文档中明确其不同维度的表达式.

1D Heat Equation

若温度仅沿x方向变化(如细长杆),则$\nabla^2 u = \frac{\partial^2 u}{\partial x^2}$,方程简化为:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

部分教材用\(k^2\)代替k,仅为强调常数正性,不影响求解逻辑.

物理意义

温度随时间的变化率((\frac{\partial u}{\partial t}))与温度的空间二阶导数((\frac{\partial^2 u}{\partial x^2}))成正比.

  • 若$\frac{\partial^2 u}{\partial x^2} > 0$(温度分布 concave up):$\frac{\partial u}{\partial t} > 0$,该点温度随时间升高
  • 若$\frac{\partial^2 u}{\partial x^2} < 0$(温度分布 concave down):$frac{\partial u}{\partial t} < 0$,该点温度随时间降低

求解步骤

问题背景:以细长杆温度分布为例

  • Boundary conditions

$u(0,t)=0^{\circ} C$(左端恒温0℃)

$u(L,t)=50^{\circ} C$(右端恒温50℃)

  • initial condition

$u(x,0)=100x$(初始温度分布)

细长杆长度为$L$,沿$x$轴放置,$0\leq x\leq L,t\geq0$;

  • Equation

$$\frac{\partial u}{\partial t} = k^2 \frac{\partial^2 u}{\partial x^2}$$

步骤1:假设解的形式

设$u(x,t) = X(x)T(t)$,代入一维热传导方程:

$$X(x)T'(t) = k X”(x)T(t)$$

两边除以(X(x)T(t)k),分离变量:

$$\frac{X”(x)}{X(x)} = \frac{T'(t)}{k T(t)} = \alpha$$

其中$\alpha$为分离常数,需讨论$\alpha=0,\alpha>0,\alpha<0$三种情况.

步骤2:讨论分离常数$\alpha$的取值

  • 情况1:$\alpha=0$,Steady-State Solution
  1. $X”(x)=0$:解为$X(x) = C_1x + C_2$;
  2. $T'(t)=0$:解为$T(t) = C_3$(常数,无时间依赖)
  3. 总解:$u(x,t) = Ax + B$($A=C_1C_3$,$B=C_2C_3$),代入边界条件$u(0,t)=0$和$u(L,t)=50$,得$B=0$,$A=\frac{50}{L}$,故稳态解为:$u_{\text{steady}}(x) = \frac{50x}{L}$

稳态解:$t\to\infty$时,系统温度不再随时间变化,仅沿空间线性分布.


Review:Method of Chracteristics

运输方程

示例

步骤总结

Constant Coefficient Homogeneous Differential Equation


0 条评论

发表回复

Avatar placeholder

您的邮箱地址不会被公开。 必填项已用 * 标注