Thermodynamic Potentials: Natural Variables & Exact Differential

Thermodynamic PotentialNatural VariablesExact DifferentialKey Partial DerivativesMaxwell Relation
Internal Energy $U$$S, V$\(dU = TdS – pdV\)\(\left( \frac{\partial U}{\partial S} \right)_V = T\);\(\left( \frac{\partial U}{\partial V} \right)_S = -p\)\(\left( \frac{\partial T}{\partial V} \right)_S = -\left( \frac{\partial p}{\partial S} \right)_V\)
Enthalpy $H$$S, p$\(dH = TdS + Vdp\)\(\left( \frac{\partial H}{\partial S} \right)_p = T\);\(\left( \frac{\partial H}{\partial p} \right)_S = V\)\(\left( \frac{\partial T}{\partial p} \right)_S = \left( \frac{\partial V}{\partial S} \right)_p\)
Gibbs Energy $G$$p, T$\(dG = Vdp – SdT\)(基本方程)\(\left( \frac{\partial G}{\partial p} \right)_T = V\);\(\left( \frac{\partial G}{\partial T} \right)_p = -S\)\(\left( \frac{\partial V}{\partial T} \right)_p = -\left( \frac{\partial S}{\partial p} \right)_T\)
Helmholtz Energy $A$$V, T$\(dA = -pdV – SdT\)\(\left( \frac{\partial A}{\partial V} \right)_T = -p\);\(\left( \frac{\partial A}{\partial T} \right)_V = -S\)\(\left( \frac{\partial p}{\partial T} \right)_V = \left( \frac{\partial S}{\partial V} \right)_T\)
Δ(状态函数有限变化)
d(精确微分)
δ(非精确微分)
∂(偏导数)

Tips

Natural Variable 指的是与特定 Thermodynamics potentials($U$, $A$, $H$, $G$)直接关联的一组状态变量;当一个热力学势被表示为其 “自然变量” 的函数时,它的微分形式会变得简洁且仅包含状态函数($T$, $P$, $V$, $S$),该变量组合是热力学势最 “原生”、最能直接反映其本质的描述方式.

Partial Derivatives & Maxwell Relations

U→H→G→A,这是推导的顺序.


0 条评论

发表回复

Avatar placeholder

您的邮箱地址不会被公开。 必填项已用 * 标注