Interface Control

Interface Control的核心是速度瓶颈再界面原子交互,与时间无关,而仅与过冷度$\Delta T$和Dislocation有关,规律最稳定.

分为两种生长模式:

  • Continuous: 对Rough
  • Crosswise: 对Smooth

Scenarios of occurance

Pure materials (no diffusion needed)

  • 热力学条件

纯物质的相变平衡温度为熔点$T_m$,实际相变需过冷($T<T_m$),此时液态(母相)自由能高于固态(产物相),提供驱动力$\Delta G<0$

  • 动力学特征

无溶质成分变化,无需长程溶质扩散

界面原子迁移速率直接决定生长快慢

Alloys at temperatures below $T_m$

  • 热力学条件

$T_m$:Equilibrium Phase Transtion Temperature,相变平衡温度;在此温度下,$G_{parent}=G_{product}$,相变驱动力$\Delta G=0$,系统处于动态平衡,宏观上无相变发生

  • 动力学特征

溶质分配系数($k=\frac{c_S}{C_L}<1$)导致界面附近溶质堆积,但温度低于$T_0$时,溶质扩散系数($D$)极低

界面处的原子迁移(如固液界面的连续生长)成为唯一限速步骤

Interface Structure & Corresponding Growth Modes

Atomically Rough Interface

Atomically Smooth Interface

Defect-Assisted Growth (Faster than 2D Nucleation)

For materials with defects, growth is easier.

  • Screw Dislocation Growth: Atoms attach to the “spiral” edge of a screw dislocation (no need for 2D nucleation)
  • Growth rate rule:
  1. For small $\Delta T_k$: $R \propto \Delta T_{k}^{2}$
  2. For large $\Delta T_k$: $R \propto \Delta T_{k}$
  • Result: A “growth spiral” forms on the interface.

Diffusion Control

Diffusion control means the growth rate (R) is determined by how fast heat or solute diffuses over long distances (not the interface).

这部分没学完

Diffusionless Transformations

这部分没学


0 条评论

发表回复

Avatar placeholder

您的邮箱地址不会被公开。 必填项已用 * 标注