Basic Definations
System & Surroundings
system – part
surroundings – everything outside the system
Tips
If the universe is regarded as the universal set(全集), then the surroundings is the complement(补集) of the system.
Types of systems:
- Open system
Exchanges energy and matter with surroundings
- Closed system
Exchanges energy but no matter
- Isolated system
Exchanges no energy or matter
State Functions & Path Functions
State: $U,H,S,G$
Path: $q,w$
Extensive Properties & Intensive Properties
Extensive properties depend on the amount of matter, $V$
Intensive properties do not depend on the amount of matter, $T,V_m$
Thermodynamic Processes
- Isothermal
- Isobaric
- Isochoric
- Adiabatic
- Reversible
- Irreversible
Internal Energy, Enthalpy & Heat Capacity
Basic Defination
- Energy
- Internal Energy $U$
- Work $w$
First Law of Thermodynamics
$$\Delta U=q+w$$
为什么 $q$和 $w$是path function,而 $U$却为state function呢?
Enthalpy
$$H=U+pV$$
$U,p,V$均为state function,$H$也为state function.
无法直接测量$H$,只能通过热量变化$q_p$间接测$\Delta H$;$\Delta H<0$为exothermic,$\Delta H>0$为吸热反应.
Heat Capacity $C$
热容(heat capacity, $C$)描述系统升高 1K 所需的热量,是能量储存能力的度量:
$$C = \frac{\delta q}{dT}$$
按 “是否考虑物质的量” 和 “过程条件” 可分为:
- 按物质的量分类
- 按过程条件分类
按物质的量分类
- 比热容(specific heat capacity, $C_s$)
单位质量的热容,$C_s= C/m$(m 为质量)
- 摩尔热容(molar heat capacity,C_m):单位物质的量的热容,$C_m = C/n$(n 为物质的量);
注意:部分文献省略 “m”,需通过单位判断(Cₘ单位为 J・K⁻¹・mol⁻¹,C 为 J・K⁻¹)
按过程条件分类
- 定容热容(constant volume heat capacity, $C_v$)
等容过程(dV=0)中,$\delta q_v = dU$,因此:$C_V = \left( \frac{\partial U}{\partial T} \right)_V$(偏导数表示 “体积固定时,$U$ 随 $T$ 的变化率”),且 $dU = C_v dT$
- 定压热容(constant pressure heat capacity, $C_p$)
等压过程($dp=0$)中,$\delta q_p = dH$,因此:$C_p = \left( \frac{\partial H}{\partial T} \right)_p$且 $dH = C_p dT$
$C_p$与$C_v$的关系
固体 / 液体:$C_p \approx C_v$(体积变化小,膨胀功可忽略,ΔU≈ΔH)
理想气体:$C_p = C_v + nR$($R$ 为气体常数)
示例:单原子理想气体(如 He)的 Cᵥ,m = 3R/2,Cₚ,m = 5R/2(由能量均分原理推导)
0 条评论