文档 1:一阶常微分方程(分离变量法)
文档 2:积分方法与技巧

文档 3:双曲函数与参数方程积分
这一部分实在是重难点
fomula sheet上没有反双曲函数,也没有双曲函数的基本定义式:
- 双曲函数
$$\sinh ax=\frac{e^{ax}-e^{-ax}}{2},\cosh ax=\frac{e^{ax}+e^{-ax}}{2}$$
- 反双曲函数
$$\sinh^{-1} y = \ln(y + \sqrt{y^2 + 1}),\cosh^{-1} y = \ln(y + \sqrt{y^2 – 1})(y \geq 1)$$
cosechx这样的函数,直接转换为sinhx、coshx这些就好,但是FS上也没有


掌握转动惯量的计算
把tutorial的例题做完了,练习题还没做
文档 4:一阶 ODE:分离变量法进阶
order=方程中最高阶导数的阶数
线性方程:不含 y 及其导数的乘积、幂次或非线性函数(如 $\sin y$、$y^2$)

文档 5:一阶 ODE:积分因子与齐次方程
积分因子,缺少判断微分方程的步骤(像老师复习课讲的),example里的substitution method得再看一下
文档 6:复数与复分析基础
ing
做完了,好好敲卡西欧就行
文档 7:二阶线性 ODE:齐次与非齐次方程
看完lecture了,准备做tutorial
还欠缺exercise C,substitution啥玩意
文档 8:向量代数与几何应用
文档 9:三维几何:直线与平面
文档 10:矩阵基础与运算
直接上卡西欧了,懒得喷
文档11:特征值,逆矩阵
做完了
0 条评论