Infinite Series

Series Convergence Tests

https://www.youtube.com/watch?v=Y9JctArSAQw&t=137s
https://www.youtube.com/watch?v=0wefqjpQyKM

将数列划分为4个类别:

  • Basic:已知其收敛性的series
  • Almost basic:非常接近GS和pS的series
  • Alternating
  • Weird

Basic

  • Geometric series

$$
\sum_{n=1}^{\infty}ar^{n-1}=
\begin{cases}
\frac{a}{1-r}\ \left| r \right| <1\\
diverges\ \left| r \right| \geq 1
\end{cases}
$$

  • $p$ series

$$
\sum_{n=1}^{\infty}\frac{1}{n^p}, p > 1
$$

Almost basic

$\sum_{n=1}^{\infty}\frac{1}{\sqrt{n^3+5}}\sim \sum_{n=1}^{\infty}\frac{1}{\sqrt{n^3}}$

Set $\sqrt{n^3}$as $n^{\frac{3}{2}}$,

$p>1$, so that the series converges.

  • Comparison

$$a_n\leq b_n$$

  • Limit Comparison

$$
\lim_{n\rightarrow \infty}\frac{a_n}{b_n}=c>0
$$

Alternating

For $\sum_{n=1}^{\infty}(-1)^{n-1}b_n$ with
1)$b_n$ decreasing
2)$b_n$ positive
3)$\lim_{n\rightarrow \infty}b_n=0$
Then the series converges.

Weird

  • Integral Test

$$
\sum_{n=1}^{\infty}a_n \ converges\ if \ \int_{1}^{\infty}f(x)dx\ converges
$$

  • Divergence Test

$$
\lim_{n\rightarrow\infty}a_n\ne 0 \Rightarrow \sum_{n=1}^{\infty}a_n \ diverges
$$

  • Root Test (for a bunch of messy stuff to the power of $n$)

$$
\lim_{n\rightarrow \infty}\sqrt{a_n}=L
$$

  • Ratio Test (for $ power$, $factorials$)

$$
\lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=L
$$

Summary

掌握求极限的技巧是学习无穷级数这部分内容的重要前提,因为至少有四类级数收敛性的判断方式涉及求极限。

判断级数是否收敛的核心难点在于:如何选择合适的判断方法

总的来说,判断级数收敛性一共有8种方法:

  • Integral Test
  • Divergence Test
  • Root Test
  • Ratio Test
  • Comparison Test
  • Limit Comparison Test
  • p-series & Geometric-series
  • Alternating Test

为了给这8种方法归类,我们将数列大致分为4种类型:

分类: yuru time

0 条评论

发表回复

Avatar placeholder

您的邮箱地址不会被公开。 必填项已用 * 标注