L9 – Intro to Mechanical properties
9.1 单向拉伸实验 The Tensile Test
Tensile Test主要测定材料的Strength.
应力与应变
- Load by cross-sectional area to give stress
- Elongation by original length to give strain

常见应力应变曲线

9.2 The Poisson Ratio
- Tensile strain:$\varepsilon_t=\frac{l-l_o}{l_o}$
- Lateral strain:$\varepsilon_l=\frac{d-d_o}{d_o}$
$$\nu = \frac{lateral \ strain}{tensile\ strain}=-\frac{\varepsilon_l}{\varepsilon_t}=-\frac{(d-d_o)l_o}{(l-l_o)d_o}$$
材料的泊松比变化不大,通常$0.17 <\nu < 0.46$
在极少数情况下,泊松比可以是负的,例如软木,在拉伸时横向膨胀,这类材料通常被称为auxetic materials.
9.3 杨氏模量的影响因素
- Temperature
- Composition
- Structure
温度的影响
- 金属和陶瓷的模量对温度的依赖性较弱
- Young’s Modulus随温度升高而降低

- 键强增加,势井加深,熔点升高
- 随着温度升高,内能上升,平均原子间距增加,即发生热膨胀;热膨胀与杨氏模量成反比

L12 – 金属强化 Strengthening of Metals
金属的塑性变形通过位错的运动实现,因此,金属强化的根本原理即是阻碍位错运动.
- 应变硬化(Strain hardening):位错和位错产生交互作用
- 细晶细化(Grain size strengthing):位错和晶界产生交错作用
- 固溶强化(Solid solution strengthening):位错和固溶原子畸变场产生交错作用
- 析出强化(Particle strengthening):位错和第二相产生交互作用
12.1 Solid solution strengthening
在晶格间隙处引入杂质原子,造成晶格畸变,从而增大位错运动的阻力,从而使合金固溶体的Strength和Hardness增加、ductility和plasticity降低
- 间隙固溶体
- 置换固溶体
在高温下持续存在,但不如低温下显著.
12.2 Strain Hardening
随着冷变形程度的增加,形变使位错大量增殖,位错之间产生交互作用(缠结),金属材料的Strength和Hardness增加,ductility和plasticity降低.
Cold Work Percentage衡量冷加工:
$$\% CW = \left( \frac{A_o-A_f}{A_o}\right) \times 100\% $$
- $A_o$为材料的原始横截面积
- $A_f$为材料变形后的横截面积
12.3 Particle strengthening
复相合金中,除基体相以外,还存在析出相;析出相以微小弥散的微粒均匀分布于基体相中,产生显著的强化作用.
析出过程:固溶$rightarrow$快冷$rightarrow$时效
- 固溶:高温下溶解度大,成分均匀
- 快冷:第二相来不及析出,形成过饱和固溶体
- 时效:过饱和的固溶原子通过扩散聚集析出第二相

12.4 Grain size strengthening
Hall-Petch relationship
$$\sigma_y=\sigma_o+k_yD^{-\frac{1}{2}}$$
- $\sigma_y$:屈服应力
- $\sigma_o$:位错运动须克服的摩擦力
- $k_y$:系数
- $D$:晶粒尺寸
室温情况下,strain strengthening既能够提高硬度,也能够提高塑性.
L13 – Fracture and Brittle Materials
Fracture
断裂类型
- 延性断裂 Ductitle:伴随大量塑性变形和高能量吸收
- 脆性断裂 Brittle:几乎不发生塑性形变
断裂过程:
主要分为两个阶段:
- 裂纹萌生 crack initiation
- 裂纹扩展 crack propagation
Ductitle Fracture in Metals
主要分为五个阶段
- Necking
- Formation of small voids
- coalescence of voids to form a crack (key stage)
- propagation of crack
- final failure by shear
fracture toughness
脆性断裂的应力:
$$\sigma_f\geq\left( \frac{2E\gamma}{\pi a} \right)^{1/2}$$
- $E$为杨氏模量
- $\gamma$为表面能
- $K_{Ic}(2E\gamma)^{1/2}$为材料的断裂韧性
Rule of thumb for damage-tolerant
$K_{Ic}>15MPa\ m^{1/2}$
高强度合金对缺陷的存在更敏感.
L14 – Fatigue and Creep
Fatigue
While investigating, Wöhler discovered that cracks formed and slowly grew on an axle surface. The cracks, after reaching a critical size, would suddenly propagate and the axle would fail. The level of these loads was less than the ultimate strength and/or yield strength of the material used to manufacture the axle.
S-N curve
Stress – Number of cycles
S-N曲线给定材料交变应力的大小(magnitude of alternating stress)与失效循环次数(number of cycles to failure)的关系


Creep
L15 – 摩擦与磨损 Friction and Wear
15.1 摩擦
- 摩擦在轴承中以热能形式损耗,应尽量减少
- 在离合器和制动系统中,摩擦是必需的
摩擦系数
- 维持滑动所需的力比开始滑动所需的力要小.
$\mu_k < \mu_s$ so less force is required to continue sliding than to start.
- 如果金属表面完全清除了氧化物(oxide),几乎不可能使它们相互滑动
$\mu > 5$: complete seizure 完全咬死
金属摩擦系数
- 当软金属(soft metals)相互滑动时(lead on lead)
- 连接处的接触面积大
- asperities之间的连接弱
- $\mu$大
- 当硬金属(hard metals)相互滑动时(steel on steel)
- 连接处的接触面积小
- asperities之间的连接强
- $\mu$大(> 0.5)
15.2 摩擦接触面积
- 摩擦与接触面积无关
- 表面粗糙峰(asperities)的应力大于屈服应力$\sigma_y$
- 尖端处发生塑性变形,增加接触面积,从而降低局部应力
- 局部应力小于$\sigma_y$时,变形停止,最终接触面积 $A=P/{\sigma_y}$

15.3 Lubrication
- Standard lubricants
- Oils
- Greases
- Soap / animal fats
- 对于高温操作,需要特殊润滑剂
- PTFE suspension in special oils(<320 °C)
- Graphite(<600 °C)
- Molybdenum disulphide(<800 °C)
15.4 磨损
- 粘着磨损(Adhesive wear)主要由表面之间的粘附力引起,导致较软材料的磨损颗粒被去除。减少方法包括减小接触面积和使用润滑剂。
- 磨粒磨损(Adrasive wear)由磨损颗粒或污染物在较软材料表面“犁”(plough)出磨损碎片。减少方法包括减小负载和增加材料表面的硬度。
Adhesive wear
- 为了最小化磨损率,我们需要最小化接触面积
$$A=P/{\sigma_y}$$
- 降低表面负载(loading on surface)$P$
- 增加材料的强度/硬度(strength/hardness)$\sigma_y$
Abrasive wear
依然通过降低接触面积,即loading on surface或提升strength来降低磨损.
15.5 Surface and Bulk Properties
选择轴承材料时应当考虑的属性:
Bulk Properties 材料属性
- 抗拉强度高
- 传热性好
- 延展性好
Surface Properties 表面属性
- 减少磨损
- 抗腐蚀
加工方法
- Surface treatments
- Minor changes to the chemistry of the surface
- Diffuse / embed atoms into the surface
- Rapid heating/cooling of the surface
Flame hardenin、Induction hardening、Laser hardening
- Coating
- Apply a thick coating to the surface
- The thick coating may require refinishing after deposition
L20 – 陶瓷材料 Ceramic
20.1 离子晶体结构
The requirement to maintain ions in contact for a stable structure means that the coordination number of the cations by anions depends on the ratio of their radii ($r_C/r_A$)
- 离子键合导致晶体结构确保正离子被负离子配位,反之亦然,以维持整体电荷中性
- 配位数取决于阳离子和阴离子半径比($r_C/r_A$)

20.2 AX-Type Crystal Structures
Equal numbers of anions ($X$) and cations ($A$)
Magnitude of charge on anions and cations must be the same
Hence, the coordination number of $A$ by $X$ and $X$ by $A$ must be the same
- 阴阳离子配位数相等
- 典型离子晶体的配位数

20.3 $A_mX_p$-Type Crystal Structures
20.4 Covalently Bonded Crystals
Covalently bonded crystal structures are dominated by bond angles, i.e. the directionality of the strong covalent bonds.
金刚石 diamond
- Coordination number:4
- Shape:tetrahedral
形成三维立体网络,各原子间均有强共价键
硬度高、杨氏模量大、抗拉强度大
石墨 graphite
- Coordination number:3
- Shape:triangular
形成二维平面网络,同层原子间有强共价键,但异层原子间仅有弱的secondary bonds.
硬度低、杨氏模量大、抗拉强度小
C-Fibre
杨氏模量较大,强度较高
抗拉强度极大
0 条评论