Infinite Series
Series Convergence Tests
将数列划分为4个类别:
- Basic:已知其收敛性的series
- Almost basic:非常接近GS和pS的series
- Alternating:
- Weird:

Basic
- Geometric series
$$
\sum_{n=1}^{\infty}ar^{n-1}=
\begin{cases}
\frac{a}{1-r}\ \left| r \right| <1\\
diverges\ \left| r \right| \geq 1
\end{cases}
$$
- $p$ series
$$
\sum_{n=1}^{\infty}\frac{1}{n^p}, p > 1
$$
Almost basic
$\sum_{n=1}^{\infty}\frac{1}{\sqrt{n^3+5}}\sim \sum_{n=1}^{\infty}\frac{1}{\sqrt{n^3}}$
Set $\sqrt{n^3}$as $n^{\frac{3}{2}}$,
$p>1$, so that the series converges.
- Comparison
$$a_n\leq b_n$$
- Limit Comparison
$$
\lim_{n\rightarrow \infty}\frac{a_n}{b_n}=c>0
$$
Alternating
For $\sum_{n=1}^{\infty}(-1)^{n-1}b_n$ with
1)$b_n$ decreasing
2)$b_n$ positive
3)$\lim_{n\rightarrow \infty}b_n=0$
Then the series converges.
Weird
- Integral Test
$$
\sum_{n=1}^{\infty}a_n \ converges\ if \ \int_{1}^{\infty}f(x)dx\ converges
$$
- Divergence Test
$$
\lim_{n\rightarrow\infty}a_n\ne 0 \Rightarrow \sum_{n=1}^{\infty}a_n \ diverges
$$
- Root Test (for a bunch of messy stuff to the power of $n$)
$$
\lim_{n\rightarrow \infty}\sqrt{a_n}=L
$$
- Ratio Test (for $ power$, $factorials$)
$$
\lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=L
$$
Summary
掌握求极限的技巧是学习无穷级数这部分内容的重要前提,因为至少有四类级数收敛性的判断方式涉及求极限。
判断级数是否收敛的核心难点在于:如何选择合适的判断方法?
总的来说,判断级数收敛性一共有8种方法:
- Integral Test
- Divergence Test
- Root Test
- Ratio Test
- Comparison Test
- Limit Comparison Test
- p-series & Geometric-series
- Alternating Test
为了给这8种方法归类,我们将数列大致分为4种类型:
0 条评论